Learn more about our science programmes

Climate02 air quality03 atmos phys04 technology05 facilities services

       1. Impacts of bromine and iodine chemistry on tropospheric OH and HO2: comparing observations with box              and global model perspectives, Stone, Daniel; Sherwen, Tomas; Evans, Mathew J.; et al. ATMOSPHERIC              CHEMISTRY AND PHYSICS Volume: 18   Issue: 5   Pages: 3541-3561   Published: MAR 12 2018

  1. Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions, Dalsoren, Stig B.; Myhre, Gunnar; Hodnebrog, Oivind; et al. NATURE GEOSCIENCE Volume: 11   Issue: 3   Pages: 178-+   Published: MAR 2018

       3. The Superstatistical Nature and Interoccurrence Time of Atmospheric Mercury Concentration Fluctuations,             Carbone, F.; Bruno, A. G.; Naccarato, A.; et al., JOURNAL OF GEOPHYSICAL RESEARCH-                                     ATMOSPHERES Volume: 123   Issue: 2   Pages: 764-774   Published: JAN 27 2018

  1. Low concentrations of persistent organic pollutants (POPs) in air at Cape Verde, Nost, Therese Haugdahl; Halse, Anne Karine; Schlabach, Martin; et al., SCIENCE OF THE TOTAL ENVIRONMENT   Volume: 612   Pages: 129-137   Published: JAN 15 2018
  1. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations," ELEMENTA-SCIENCE OF THE ANTHROPOCENE   Volume: 5     Article Number: 58   Published: OCT 18 2017.
  1. Evaluation of Novel Routes for NOx Formation in Remote Regions,  Ye, Chunxiang; Heard, Dwayne E.; Whalley, Lisa K. ENVIRONMENTAL SCIENCE & TECHNOLOGY   Volume: 51   Issue: 13   Pages: 7442-7449   Published: JUL 4 2017
  1. Read, K. A., Neves, L. M., Carpenter, L. J., Lewis, A. C., Fleming, Z., and Kentisbeer, J.: Four years (2011–2015) of Total Gaseous Mercury measurements from the Cape Verde Atmospheric Observatory, Atmos. Chem. Phys., doi:10.5194/acp-2016-1036, 2017
  1. Reed, C., Evans, M. J., Crilley, L. R., Bloss, W. J., Sherwen, T., Read, K. A., Lee, J. D., and Carpenter, L. J.: Evidence for renoxification in the tropical marine boundary layer, Atmos. Chem. Phys., 17, 4081-4092, doi:10.5194/acp-17-4081-2017, 2017.
  1. Travnikov, O., et al., Multi-model study of mercury dispersion in the atmosphere: Atmospheric processes and model evaluation, Atmos. Chem. Phys., doi:10.5194/acp-2016-924, 2017.
  1. 1.Zellweger, C., Emmenegger, L., Firdaus, M., Hatakka, J., Heimann, M., Kozlova, E., Spain, T. G., Steinbacher, M., van der Schoot, M. V., and Buchmann, B.: Assessment of recent advances in measurement techniques for atmospheric carbon dioxide and methane observations, Atmos. Meas. Tech., 9, 4737-4757, doi:10.5194/amt-9-4737-2016, 2016.
  1. Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production, Helmig D. et al., Nature Geoscience, 9, 490-495 (2016), doi:10.1038/ngeo2721
  1. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Sprovieri et al., Atmos. Chem. Phys., 16, 11915-11935, 2016, http://www.atmos-chem-phys.net/16/11915/2016/, doi:10.5194/acp-16-11915-2016
  1. Boylan P, Helmig D, Oltmans S. Ozone in the Atlantic Ocean marine boundary layer. Elem Sci Anth. 2015;3:45. DOI:http://doi.org/10.12952/journal.elementa.000045

     14.van Pinxteren, M., Fiedler, B., van Pinxteren, D., Iinuma, Y.,  Körtzinger, A., Herrmann, H.: Chemical                        characterization of sub-micrometer aerosol particles in the tropical Atlantic Ocean: marine and biomass                  burning influences. J.  Atmos. Chem., 72(2), 105-125, 2015.

  1. Evaluation of the MACC operational forecast system – potential and challenges of global near-real-time modelling with respect to reactive gases in the troposphere, Wagner, A., et al. , Atmos. Chem. Phys., 15, 14005-14030, doi:10.5194/acp-15-14005-2015, 2015.
  1. Gridded global surface ozone metrics for atmospheric chemistry evaluation, Sofen et al., Earth Syst. Sci. Data. Discuss., 8, 603-647, 2015, doi:10.5194/essdd-8-603-2015
  1. G.S. Jenkins, et al. Elevated middle and upper troposphere ozone observed downstream of tropical cyclones, Atmos. Environ., doi: 10.1016/j.atmosenv.2015.07.025, 118, October 2015, Pages 70–86.

     18.Aerosol time-series measurements over the tropical Northeast Atlantic Ocean: Dust sources, elemental                  composition and mineralogy, Patey M et al., Marine chemistry, 174, 103, 119, 2015.

  1. Climatology and atmospheric chemistry of the non-methane hydrocarbons ethane and propane over the North Atlantic, Helmig et al., 2015, Elementa-Science of the Anthropocene, 3, 1, 16.

     20. Van Pinxteren, M., Herrmann, H. (2014): Carbonyl compounds in marine aerosol particles and the sea                     surface microlayer. SOLAS Newsletter, issue 16, 14-15.

  1. Long-term chemical characterization of tropical and marine aerosols at the Cape Verde Atmospheric Observatory (CVAO) from 2007 to 2011. K. W. Fomba, K. Müller, D. van Pinxteren, L. Poulain, M. van Pinxteren, and H. Herrmann, Atmos. Chem. Phys., 14, 8883-8904, 2014
  1. Niedermeier, N., Held, A., Müller, T., Heinold, B., Schepanski, K., Tegen, I., Kandler, K., Ebert, M., Weinbruch, S., Read, K., Lee, J., Fomba, K. W., Müller, K., Herrmann, H., and Wiedensohler, A.: Mass deposition fluxes of Saharan mineral dust to the tropical northeast Atlantic Ocean: an intercomparison of methods, Atmos. Chem. Phys., 14, 2245-2266, doi:10.5194/acp-14-2245-2014, 2014.
  1. Observations of I2 at a remote marine site, Atmospheric Chemistry and Physics, 2014, 14, 5, 2669, doi 10.5194/acp-14-2669-2014.
  1. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer, Proceedings of the National Academy of sciences of the united states of America, Savarino J et al., 2013, 110, 44, 17668, doi: 10.1073/pnas.1216639110.
  1. The influence of biomass burning on the global distribution of selected non-methane organic compounds, Lewis et al., ACP., 13, 851-867, doi:10.5194/acp-13-851-2013, 2013
  1. G.S. Jenkins, et al. Multi-site tropospheric ozone measurements across the north Tropical Atlantic during the summer of 2010,Atmos. Environ., 70 (2013), pp. 131–148
  1. Aerosol size-resolved trace metal composition in remote northern tropical Atlantic marine environment: case study Cape Verde islands, Fomba et al., ACP, 13, 9, 4801, doi: 10.5194/acp-13-4801-2013.
  1. Gas phase acid, ammonia and aerosol ionic and trace elemnt concentrations at Cape verde during the reactive Halogens in the Marine boundary Layer (RHaMBLe) 2007 intensive sampling period, 2013, Earth System Science data, 5, 2, 385, doi: 10.519/essd-5-385-2013.

     29.  Van Pinxteren, M. and Herrmann, H.: Glyoxal and Methylglyoxal in Atlantic Seawater and marine Aerosol                Particles: Method development and first application during the Polarstern cruise ANT XXVII/4. Atmos.                    Chem. Phys., 13, 15301-15331, 2013.

  1. Multi-annual observations of acetone, methanol and acetaldehyde in remote tropical Atlantic air: Implications for atmospheric OVOC budgets and oxidative capacity, Read K.A. et al. Vol. 46, No. 20, 16.10.2012, p. 11028-11039.
  1. Seasonal observations of OH and HO2 in the remote tropical marine boundary layer, Vaughan et al., Atmos. Chem. Phys.,12, 2012, 2149-2172

  1. HOCl and Cl2 observations in marine air, Lawler, M. J. et al. Atmos. Chem. Phys., 11, 2011, 7617-7628

  1. Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory L.J. Carpenter et al. , J. Atmos. Chem. DOI 10.1007/s10874-011-9206-1, 2010.

  1. DOAS observations of formaldehyde and its impact on the HOx balance in the tropical Atlantic marine boundary layer, Mahajan et al., 2012, J. Atmos, Chem, 66, 3, 167-178.

  1. Reactive Halogens in the Marine Boundary Layer (RHaMBLe): The tropical North Atlantic Experiments, Lee, J. D. et al. Atmos. Chem. Phys., 10, 2010, 1031-1055.

  1. Measurement and modelling of reactive halogen species over the tropical Atlantic Ocean. Mahajan, A. S. et all. Atmos. Chem. Phys. 10, 2010, 4611-4624

  1. The Chemistry of OH and HO2 Radicals in the Boundary Layer over the Tropical Atlantic Ocean Whalley, L. K. et al. Atmos. Chem. Phys., 10, 1555-1576, 2010

  1. Pollution-enhanced Cl chemistry in the eastern tropical Atlantic boundary layer. Lawler, M.J. et al. Geophys. Res.Lett. 36, L08810, 2009

  1. Particle characterization at the Cape Verde atmospheric observatory during the 2007 RHaMBLe intensive. Müller, K. et al. Atmos. Chem. Phys. 9, 22739-22771, 2009

  1. Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands. Müller, C. et al. Atmos. Chem. Phys., 9, 9587-9597, 2009

  1. Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates. Allan, J.D.et al., Atmos. Chem. Phys., 9, 9299-9314, 2009

  1. Bromocarbons in the tropical marine boundary layer at the Cape Verde Observatory – Measurements and modelling. O'Brien, L. M. et al. Atmos. Chem. Phys., 9, 9083-9099, 2009

  1. Novel findings in the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) project. McFiggans, G.B., et al., Geochimica Et Cosmochimica Acta, 73, A857-A857, 2009

  1. Intra-annual cycles of NMVOC in the tropical marine boundary layer and their use for interpreting seasonal variability in CO. Read, K.A. et al. J. Geophys. Res. 114 , D21303, 10.1029/2009JD011879, 2009

  1. Year-round measurements of nitrogen oxides and ozone in the tropical North Atlantic marine boundary layer. Lee, J. D., et al. J. Geophys. Res., 114, D21302, doi:10.1029/2009JD011878, 2009

  1. Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates., allan et al., 2009, ACP, 9, 23, 9299-9314.

  1. Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Read, K. A., et al. Nature, 453, 2008, 1232-1235